

Observation of muon neutrino to electron neutrino transformation in the T2K experiment

Yu.G.Kudenko INR RAS

INR seminar, 22 July 2013 r.

22 July 2013

Outline

- neutrino mixing
- T2K experiment
- v_e appearance
- perspectives
- summary

Standard Model: neutrinos are *massless* particles

3 families
$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \text{ by Summer 2013}$$
atmospheric
$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\theta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\theta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$
Ink between atmospheric and solar
U parameterization: three mixing angles $\theta_{12} = \theta_{23} = \theta_{13}$ and CP violating phase δ

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} \Delta m_{12}^{2} + \Delta m_{23}^{2} + \Delta m_{31}^{2} = 0 \qquad \text{two independent } \Delta m^{2}$$

$$\Delta m_{12}^{2} = \Delta m_{sol}^{2} \approx 7.5 \times 10^{-5} \text{ eV}^{2} \quad \Delta m_{23}^{2} \equiv \Delta m_{a1}^{2} = (9 + -0.6)^{0} \qquad ?? \text{ MH and } \delta ??$$

$\nu_{\mu} \rightarrow \nu_{e}$ in matter

Physics motivation

Discovery of $\nu_{\mu} \rightarrow \nu_{e}$:

- direct detection of neutrino flavor mixing in "appearance" mode
- fundamental role of $\nu_{\mu} \rightarrow \nu_{e}$ in measurement of mass hierarchy and CP violation in lepton sector

CP violation

all mixing angles $\neq 0 \rightarrow J_{CP} \neq 0$ if $\delta \neq 0$

Quark sector $J_{CP} \approx 3 \times 10^{-5}$

Lepton sector $J_{CP} \sim 0.02 \times sin\delta$

Long-Baseline Neutrino Oscillation Experiment

JAPAN

SuperKamiokande

Toyama Kamioka Mine

~ 500 members 59 institutions 11 countries

JPARC

Токио

Tokai

Tokyo/Narita Airport

T2K layout

T2K off-axis v beam

Off-axis near detector

Measurement of unoscillated v beam Composition Normalization Cross section measurements

v beam

(ND280)

Delivered protons on T2K target (pot)

- proton beam power: 235 kW reached (stable operation 220 kW)
- # of protons per pulse > 1.2×10¹⁴
 6.39×10²⁰ pot used for this analysis (~ 8% of all pot expected for T2K)

Neutrino beam

Muon monitors

- Pulse-by-pulse monitoring of the beam center by muon monitors
- 1 mrad shift of direction \rightarrow ~2% shift of neutrino peak energy

INGRID

beam direction << 1mrad stable interaction rate within 0.7%

T2K events at SK

INR RAS, Moscow

6.39x10²⁰ pot (Run 1-4):

532 Fully Contained (FC) events 363 in Fiducial Volume (FCFV) Expected Bkg: 0.07 (FV 0.008)

measurements

Hadron production measurements

CERN NA61/SHINE experiment

- Large acceptance spectrometer + TOF
- Measure hadron(π, K) yield distribution in 30 GeV p + C inelastic interaction

v flux prediction

 v_e component in T2K beam: ~1.1% (intrinsic BG for v_e appearance) in neutrino energy interval 100-2000 MeV

22 July 2013

ND280 constraints

ND280: in total 24,910 events (RUN1-4)

	CC0π purities	CC1π purities	CCother purities
CC 0π	72.6%	6.4%	5.8%
CC1π	8.6%	49.4%	7.8%
CCother	11.4%	31%	73.8%
Bkg(NC+anti-nu)	2.3%	6.8%	8.7%
Out FGD1 FV	5.1%	6.5%	3.9%

The v_{μ} spectrum at the near detector is fit to extract flux and cross section constraints at the far detector

Selection criteria

Analysis of the T2K data accumulated for 6.39x10²⁰ POT (Run 1-4)

- Event time compatible with expected arrival time
- Fully contained in the fiducial volume (>2m from the wall)

v_e events

Fully-contained events with:

- 1 electron-like ring
- Visible energy > 100 MeV
- No decay electron
- Invariant mass not consistent with π^0
- 100 MeV < Energy < 1250 MeV

v_e selection (1)

v SELECTION CRITERIA

- Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- Only one reconstructed 2. ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. Event's invariant mass not consistent with π^0 mass
- 7. Reconstructed venergy E^{, rec} <1,250MeV

0 Vertex Z (cm)

-1000

22 July 2013

Yu.Kudenko INR RAS, Moscow

500

1000

Vertex Dwall (cm)

1500

20

1000

These parameters are used in MC simulations of neutrino events at SK

Parameter	Value
Δm^2_{21}	$7.6 imes 10^{-5} \mathrm{eV}^2$
Δm^2_{32}	$2.4 imes 10^{-3} \mathrm{eV}^2$
$\sin^2 2\theta_{12}$	0.8495
$\sin^2 2\theta_{23}$	1.0
$\sin^2 2\theta_{13}$	0.1 (or 0)
$\delta_{ m CP}$	0
Mass hierarchy	Normal
u travel length	$295 \mathrm{km}$
Earth density	$2.6 \mathrm{g/cm^3}$

v_e selection (2)

22 July 2013

(4)

$\nu_{\rm e}$ SELECTION CRITERIA

- Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. Event's invariant mass not consistent with π^0 mass
- 7. Reconstructed venergy $E_v^{rec} < 1,250 MeV$

Yu.Kudenko

INR RAS, Moscow

v_e selection (4)

new π^0 fitter

π^0 background reduction (1)

$\nu_{\rm e}$ SELECTION CRITERIA

- Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. Event's invariant mass not consistent with π^0 mass \rightarrow new 2D cut
- 7. Reconstructed v energy $E_v^{rec} < 1,250 MeV$

γ Photon Vertex π⁰ γ Assumption two electron rings produced at a common vertex [12 parameters]

- •Vertex(X,Y,Z,T)
- •Directions($\theta_1, \phi_1, \theta_2, \phi_2$)
- •Momenta (p₁, p₂)

•Conversion lengths (c1, c2)

2D cut : π^0 mass and the likelihood ratio $\ln(L_{\pi 0}/L_e)$

22 July 2013

v_{e} selection (5) π^{0} background reduction (2)

300

ν_{e} SELECTION CRITERIA

- Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. 2D cut : π^{0} mass and the likelihood ratio $\ln(L_{\pi0}/L_{e})$
- 7. Reconstructed v energy $E_v^{rec} < 1,250 MeV$

22 July 2013

Yu.Kudenko

INR RAS, Moscow

v_e selection (6)

$\nu_{\rm e}$ SELECTION CRITERIA

- Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. 2D cut : π^0 mass and the likelihood ratio $ln(L_{\pi 0}/L_e)$
- 7. Reconstructed v energy E^{rec} <1,250MeV

INR RAS, Moscow

MC and data

RUN1-4	MC Expectations w/ sin ² 2θ ₁₃ =0			Dete		
6.393x10 ²⁰ POT	v _µ +v _µ CC	v _e +v _e CC	NC	BG total	Signal	Data
True FV	308.01	15.48	271.56	595.05	0.53	-
FCFV	234.75	14.89	76.50	326.13	0.51	363
One-ring	134.94	9.59	21.59	166.12	0.46	186
e-like	5.32	9.52	14.86	29.70	0.46	58
E _{vis} >100MeV	3.46	9.45	12.66	25.58	0.44	55
No decay-e	0.65	7.71	10.64	19.01	0.41	43
E _v ^{rec} <1250MeV	0.20	3.78	8.04	12.02	0.40	38
fiTQun π⁰	0.06	3.29	0.87	4.23	1 0.38	28
Efficiency [%]	0.0	A ^{21.3}	0.3	0.7	72.3	-
Beam v_e + anti v_e		anti v _e	solar	term ~s	$in^2\theta_{12}$	

v_e events shown in green and red

Vertex distributions

Systematic uncertainties

Predicted # of events w/ 6.4 × 10²⁰ POT

Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
v _e signal	0.38	16.42
v _e background	3.17	2.93
ν _u background (mainly NCπ	⁰) 0.89	0.89
$v_{\mu} + v_{e}$ background	0.20	0.19
Total	4.64	20.44

Systematic uncertainties		
Error source	$sin^{2}2\theta_{13}=0.0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux + v int. in T2K fit	4.9 %	3.0 %
v int. (from other exp.)	6.7 %	7.5 %
Far detector	7.3 %	3.5 %
Total	11.1 %	8.8 %
Total (2012)	13.4 %	10.3 %
w/o ND280	24%	27%

- L_{shape} : Product of the probabilities that each event has a particular value of (p_e, θ_e) . - ϕ : predicted Probability Density Function (PDF).
- L_{syst} : A multivariate normal distribution of systematic parameters

22 July 2013

Likelihood curves

22 July 2013

INR RAS, Moscow

(rate + E_v shape)

• Fit data to the reconstructed energy distribution

$$E^{rec} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

• best fit w/ 68% C.L. error:

$$\sin^2 2\theta_{13} = 0.152^{+0.041}_{-0.034}$$

assuming $|\Delta m^2_{32}|=2.4 \times 10^{-3} \text{ eV}^2$ $\delta_{CP}=0, \sin^2 2\theta_{23}=1,$ Normal hierarchy

• Very consistent with $p-\theta$ analysis

 $\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$

22 July 2013

22 July 2013

significance is calculated as $~\sqrt{\Delta}\chi^2$

$\sqrt{-2\Delta \ln L} = \sqrt{56.27}$ = 7.5 σ

p-value is calculated as follows:

- 1. Generate 1e15 toy experiments with $sin^22\theta_{13}=0.0$.
- 2. Fit each toy experiment extract $-2\Delta lnL (=\Delta \chi^2)$.
- 3. p-value is the fraction of toy experiments above $\Delta \chi^2_{data}$

$θ_{23}$ uncertainties dominate in δ - sin²2θ₁₃ plot

Р(<u>⊽</u>е)

T2K and Nova

Mass Hierarchy and CP violation MH $P(\bar{v}_a)$ vs. $P(v_a)$ for NOvA $P(\bar{v}_{e})$ vs. $P(v_{e})$ for T2K significance of hierarchy resolution (G) 0.09 Р(₀) 0.09 NOVA T2K l∆m₃₂²l = 2.32 10⁻³ eV² $|\Delta m_{32}^2| = 2.32 \ 10^{-3} \ eV^2$ $\sin^2(2\theta_{13}) = 0.095$ 2.5 0.08 sin²(2013) = 0.095 0.08 $\sin^2(2\theta_{23}) = 1.00$ $\sin^2(2\theta_{23}) = 1.00$ 2.00.07 0.07 0.06 0.06 0.05 0.05 1.0 0.04 0.04 0.03 0.03 0.02 $\circ \delta = 0$ 0.02 $\circ \delta = 0$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 • $\delta = \pi/2$ $\delta = \pi/2$ $\delta / (2\pi)$ $\Box \delta = \pi$ $\Box \delta = \pi$ 0.01 0.01 • $\delta = 3\pi/2$ $\delta = 3\pi/2$ 0 0 0.02 0.04 0.06 0.08 δ 0.02 0.04 0.06 0.08 P(v_e) P(v_) 1.0 δ range included for given 0.9 significance of hierarchy 0.8determination ($\Delta m^2 > 0$ case) For sin²20₁₃=0.1, approximately (at 0.7 of § 9.0 90%C.L.): 0.5 0.4 MH: ≈50% coverage • 0.3 0.2 CPV: ≈30-40% coverage • 0.1 0.0 0.5 1.5 2.5 3 2 significance of hierarchy resolution (σ)

22 July 2013

Conclusion

- Observation of v_µ→v_e appearance at 7.5 σ significance A new type of transformation among neutrinos has firmly established"
- Near future: precision measurements of neutrino mixing parameters
- Good prospects for first search for CP violation in lepton sector

спасибо за внимание!

Backup slides

BG events from OD interactions:

 0.03 ± 0.009 events: (0.1%) of FCFV v_e candidates

Data	28		
MC	sin ² 20 ₁₃ =0	$\sin^2 2\theta_{13} = 0.1$	
oscillation $v_{\mu} \rightarrow v_{e}$	0.38	16.42	
v _e BG (beam)	3.17	2.93	
ν _μ BG(NC π0)	0.89	0.89	
$v_e + v_\mu BG$	0.20	0.19	
MC Total	4.64	20.44	
Sys.err (%)	(11.1%)	(8.8%)	
Sys. err(number)	± 0.52	±1.80	
Sys. err(%)-2012	(13.0%)	(9.9%)	

