

Where the GeV radiation comes from?

Fermi Large Area Telescope

PSF P6_V3_DIFFUSE for energy =10000 MeV

Only "good" (class 3) photon events ~2 107

Days

Days from the start of records

Fermi team: there is no a proper absorber at this energy - H Ly a is too soft, Therefore this is some trick in particle acceleration

Poutanen & Stern 2010: if the break is significant it is usually at 3 - 4 GeV

November 2009 – December 2010: exceptionally bright flares of 3C 454.3

Days from the start of records

 χ^2 , lognormal fit, 11 DOF

If the feature is stable, it should grow in significance when piling up spectra

What about total average 3c454.3 spectrum?

$$v \vdash v = 10^{(\log E - \log Ep)^2/s^2}$$

Log (1GeV flux, erg/cm²/s)

Conclusions

1. He II absorption break has a huge significance and precise agreement with data

2. The photon-photon opacity is not very large, ~ 0.3 - 1.0, the emission region probably spans a long range from inner beyond outer BLR

3. The underlying spectrum can be described well as a lognormal distribution with sigma ~ 3 (decimal)

4. The jet "breaths" with power variation: the emission region moves outward at a high state

Stern & Poutanen 2012

Summing up blazar spectra

There is a situation when a sum of different spectra gives more information than individual spectra:

A stable emission or absorption feature.

The sample:

- 1-st Fermi catalog. Flat spectrum radio quasars or "low peak" BL Lacs,
- z > 0.4
- detection significance > 20 sigma.

39 objects

2 brightness groups 11 brightest except 3C454 27 next brightest

	Np >1Gev	Z	χ^2 _{PL}	$\chi^2_{_{Lgnr}}$	$\chi^2_{_{Lgnr+abs}}$
3c279a	2200	0.536	109	11.9	11.2
4c21	2600	0.454	100	14.6	5.1
4c38	1700	1.81	192	23	18.
pks0235	1600	0.94	52	6.4	6.0
pks0426	2200	1.03	46	38	34
pks0454	1400	1.00	75	23.7	21.5
pks0537	3600	0.892	56	37	33
pks1424	1500	1.52	23	17.8	14.2 (tau1=0)
pks1502	2800	1.84	200	16	6.9
txs1520	1900	1.48	42	6.4	3.1
pks1510	3500	0.36	120	9.5	4.7

Conclusions

- A fraction (> 0.5) of blazar gamma-ray emission is produced in the inner (high ionization) part of BLR.

- This means that the jet is accelerated to Γ > 10 within 1000 Rg.
- As far as acceleration is quite slow ($\Gamma \sim \text{sqrt} (R/R_o)^*$ f, f <1), $R_o \sim R_g$, i.e. Blandford-Znajek mechanism works. Accretion disk as an inductor is ruled out!

- The one-zone mechanism (synnchrotron-self Compton or synchrotron - external Compton) is ruled out, because the magnetic field is too strong

