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Массовая щель в квантовой 
хромодинамике

Показано, что фундаментальный лагранжиан 
кван товой хромодинамики должен быть моди-
фицирован путем добавления глюонных масс, 
чтобы получить массовую щель в соответствии 
со спектральным представлением Челлена-
Лемана. Демонстрируется перенормируемость 
на массовой поверхности и унитарность полу-
ченной при этом теории.
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1 Introduction

The obtaining the mass-gap in Quantum Chromodynamics (QCD) is the
well known long standing task. QCD was quite quickly established as the
theory of strong interactions after the discovery [1] of asymptotic freedom
since physicists got the small parameter, the strong coupling constant at
high energies, and it became possible to perform perturbative calculations.
The gauge bosons of the theory, the gluons, are considered to be massless
to have gauge invariance and correspondingly renormalizability. The intro-
duction of the non-zero Lagrangian gluon masses into the fundamental QCD
Lagrangian was considered to be forbidden because of the violating either
renormalizability or untarity of the corresponding theory. Giving masses to
gauge bosons via the Higgs mechanism [2] is also not allowed since colored
Higgs particles are rejected by experiments.

Quite recently it was found that the non-abelian Yang-Mills theory [3]
with masses of the Proca type is in fact on mass-shell renormalizable [4].
Unitarity of the theory of the Proca type is obvious since it contains only
physical degrees of freedom (no ghosts).

In the present paper it is shown that it is impossible to obtain the neces-
sary mass-gap in QCD with zero Lagrangian gluon masses. The fundamen-
tal QCD Lagrangian should be modified by the adding non-zero Lagrangian
gluon masses to get the theory of the Proca type to produce the mass-gap in
accordance with the Källen-Lehmann spectral representation [5]. On mass-
shell renormalizability of the resulting theory is discussed.

2 The main part

2.1 Definitions and notations

The QCD Lagrangian is

LQCD = −1

4
F a

µνF
a µν + iψfγ

µ(∂µ − igAa
µT

a)ψf − mfψfψf (1)

−1

ξ
(∂µAa

µ)2 + ∂µca(∂µc
a − gfabccbAc

µ)

plus counterterms. The notations are standard. The summation over the
flavour index f = u, .., t is assumed. ξ is the gauge parameter of the usually
used general covariant gauge chosen because of its convenience for pertur-
bative calculations. mf = mf (µ) is the renormalized (current) quark mass,
g = g(µ) is the renormalized strong coupling constant, g2/(16π2) ≡ as, where
µ is the renormalization point.
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It is known [6] that the covariant gauge chosen in the Lagrangian (1)
does not fix the gauge ambiguity uniquely and is valid strictly speaking only
within perturbation theory. Hence the theory described by the Lagrangian
(1) with the covariant gauge condition (chosen because of its convenience
for perturbative calculations) should not be seen as the complete theory of
strong interaction, but it can be considered as the theory which reproduces
the perturbative part of the complete theory [7]. The theories, see e.g. [8],
which do not reproduce conventional perturbative QCD expansions are not
considered here.

2.2 Obtaining the mass-gap

To demonstrate the necessity of the introducing the Lagrangian gluon masses
for the obtaining the mass-gap let us consider the vacuum polarization func-
tion Π(q2)

(−q2gµν + qµqν)Π(q2) = i
∫

dxeiqx〈0| T (jµ(x)jν(0)) |0〉. (2)

where jµ =
∑

f efψfγµψf is the quark electromagnetic current, ef being the
electromagnetic quark charge.

According to the general principles of local quantum field theory the
function Π(q2) satisfies the fundamental Källen-Lehmann [5] spectral repre-
sentation

Π(q2) =
1

12π2

∫ ∞

4m2
π

ds
R(s)

s − q2 − i0
+ C, (3)

where the ratio R(s) = σtot(e
+e− → hadrons)/σ(e+e− → µ+µ−) is the

normalized total cross-section of electron-positron annihilation into hadrons,
mπ is a pion mass. The representation is written with one subtraction and
C is the subtraction constant (the number of necessary subtractions is not
important for our considerations).

We would like to stress here that this spectral reprsentation is more fun-
damental then just a dispersion relation. It can not be improved or modified.
To write a dispersion relation for a function one should know analytic prop-
ertirs of a function. The Källen-Lehmann representation itself determines
the analytic properties of Π(q2) which should be an analytic function in the
complex q2-plane with the cut starting from the first physical threshold, i.e.
as it is dictated by experiments from the two-pion threshold q2 = 4m2

π. One
gets for the discontinuity of Π(q2) on the cut

∆Π(q2) ≡ Π(q2 + i0) − Π(q2 − i0) =

{
i R(q2)/(6π) at s > 4m2

π

0 at s < 4m2
π.

(4)
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On the other hand one obtains within Perturbative QCD for the discontinuity

∆Π(q2)pQCD = θ(q2) ρgl(q
2) + θ(q2 − 4M2

u) ρq(q
2). (5)

The gluon spectral density ρgl(q
2) contributes for q2 > 0 as it is shown by

the theta-function θ(q2). This is the famous zero threshold. It arises from
those absorptive parts of Feynman diagrams of Π(q2) which are produced by
purely gluonic cuts of the diagrams (i.e. by the Cutcosky cuts which cross
only gluon propagators of diagrams). As it is well known such diagrams
appear for the first time at the four-loop level in the order a3

s (corresponding
cuts cross 3 gluon propagators).

The quark spectral density

ρq(q
2) = 3

∑
f

θ(q2 − 4M2
f )e2

f (1 + 2M2
f /q2)

√
1 − 4M2

f /q2 + O(as) (6)

arises from the quark cuts of the diagrams (i.e. from the cuts which cross
two or more quark propagators of the diagrams). It contributes for q2 > 4M2

u

where Mu is the perturbative pole mass of the lightest u-quark, defined as
the perturbative pole of the quark propagator. The perturbative quark pole
mass Mf = mf (µ)+O(as) naturally appears as the pole of the quark propa-
gator after summation of perturbative loop corrections to the propagator. It
is a renormalization group invariant quantity, i.e. independent on the renor-
malization point µ and on the subtraction scheme. In this sense it behaves
as a physical quantity and that is why it is natural to use a perturbative pole
quark mass to parametrize the theory.

We do not discuss here the important by themselves questions of con-
vergence or divergence of corresponding perturbative QCD series at low or
high energies. We will just accept the constructive approach that our con-
ventional perturbation theory is adequate to the exact solution of the theory,
i.e. it correctly reproduces the perturbative expansion of the exact solution.
We assume here that the exact solution is in principle obtainable if we know
enough mathematics.

Thus one gets within QCD that ∆Π(q2) is non-zero in the energy region
0 < q2 < 4m2

π since the perturbative contribution ∆Π(q2)pQCD is non-zero
in this interval. Here we would like to stress that one should get in QCD
an exact zero below the two-pion threshold as it is dictated by experiments.
There are also non-perturbative contributions to ∆Π(q2) , i.e. contributions
of the type e−1/as which are invisible in the perturbative expansion at the
point as = 0+ (that is e−1/as = 0 · as + 0 · a2

s + ... ).
But we note that the non-perturbative contributions can not exactly can-

cel the perturbative ones in the continuous interval 0 < q2 < 4m2
π because

5
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of the different analytical dependence on the coupling constant as. To get
the condition ∆Π(q2) = 0 at 0 < q2 < 4m2

π in agreement with experiments
we should shift perturbative gluon and quark thresholds above the two-pion
threshould q2 = 4m2

π. That is why one should introduce the non-zero gluon
masses into the fundamental QCD Lagrangian.

One could object that peturbative contributions in the exact solution for
∆Π(q2) could be moved above the two-pion threshould with the help of the
suitably arranged θ-function. E.g. the gluon perturbative contribution could
be moved above the two-pion threshould in the following way

θ
(
q2 − M2f(as)

)
ρgl(q

2), (7)

where f(as) is some function which is zero at as = 0 and M2 is a dimensional
parameter such that M2f(as) is a renormalization group invariant quantity
which produces the necessary mass-gap below the two-pion threshold.

But perturbative expansion of the contribution of eq.(7) would contain
terms with δ(q2) and its derivatives arising from the differentiating the θ-
function and we do not see such terms in real perturbative expansion. Thus
the contributions of the type of eq.(7) are excluded in the exact solution of
the theory.

The standard naive objection here is that nobody trusts perturbation
theory ar such low energies, since the corresponding perturbative series is
heavily divergent below the two-pion threshold. But only the principal exis-
tence of the pertubative series with well defined coefficients below the two-
pion threshold is of importance here independently on the question of its
convergence: the non-zero perturbative expansion means the non-zero exact
function generating this expansion.

Thus one gets the restrictions on the perturbative pole masses of gluons
and quarks

Mgl >
2√
3
mπ, (8)

Mu > mπ.

The restriction on Mu seems to be quite strong for the lightest u-quark but
it is not excluded from the first principles.

2.3 Constructing QCD with gluon masses

To construct QCD with massive gluons we will follow the approach of [4].
Presently this is the only known way to get (on mass-shell) renormalizable
theory of massive gluons without color scalars (color scalars are rejected by
experiments). Within this approach one starts from a renormalizable theory

6
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with scalar fields using the Englert-Brout-Higgs mechanism of spontaneous
symmetry breaking [2] and after transition to the unitary gauge removes re-
maining massive scalar fields. Thus we add to the massless QCD Lagrangian
(1) the scalar part to begin with the following general Lagrangian

LQCD+SCALARS = −1

4
F a

µνF
a µν + iψfγ

µDµψf − mfψfψf+ (9)

(DµΦ)+ DµΦ + (DµΣ)+ DµΣ − λ1

(
Φ+Φ − v2

1

)2
− λ2

(
Σ+Σ − v2

2

)2

−λ3

(
Φ+Φ + Σ+Σ − v2

1 − v2
2

)2
− λ4

(
Φ+Σ

) (
Σ+Φ

)
+ Lgf + Lgc

plus counterterms, where we introduced two triplets Φ(x) and Σ(x) of com-
plex scalar fields in the fundamental representation of the SU(3) color group
to get all gluon massive. Lgf is the gauge fixing part of the Lagrangian in
some chosen gauge and Lgc is the corresponding gauge compensating part
with the Faddeev-Popov ghost fields.

We can choose the following shifts of scalar fields by the quantities v1 and
v2 to generate masses of all eight gluons

Φ(x) =




φ1(x) + iφ2(x) + v1

φ3(x) + iφ4(x)
φ5(x) + iφ6(x)


 , Σ(x) =




σ1(x) + iσ2(x)
σ3(x) + iσ4(x) + v2

σ5(x) + iσ6(x)


 . (10)

Choosing for simplicity v1 = v2 ≡ v one obtains the following massive terms
for gluons in the Lagrangian

LM = m2
gl

[
(A1)2 + (A2)2 + (A3)2 +

1

2
(A4)2+ (11)

1

2
(A5)2 +

1

2
(A6)2 +

1

2
(A7)2 +

1

3
(A8)2

]
,

where m2
gl ≡ g2v2 is the gluon mass parameter of the theory.

Now one can make transition to the unitary gauge. All ghost fields as
usual disappear from the Lagrangian. Following the approach of [4] one can
remove in the unitary gauge all Higgs fields from the Lagrangian preserving
on mass-shell renormalizability of the theory.

To give the derivation of this statement let us consuder as an example
the simplified case, the generalization to the above QCD+SCALARS case
will be straightforward. Let us consider the known model given by the initial
SU(2)-invariant Lagrangian of interaction of vector bosons and scalar fields
possessing the spontaneously broken symmetry

L = −1

4
F a

µνF
a
µν + (DµΦ)+ DµΦ − λ

(
Φ+Φ − v2

)2
(12)

7
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with the doublet of scalar fields Φ(x) in the fundamental representation of
the group.

Here DµΦ =
(
∂µ − ig τ

2
aW a

µ

)
Φ is the covariant derivative, τa are the Pauli

matrices, λ > 0, v2 > 0. (This model can be considered as the Standard
Model of electroweak interactions without U(1)-interaction and fermions.
The derivation given below can be applied also to the complete Standard
Model, the γ5- matrix being treated within dimensional regularization ac-
cording to the technique of [9].)

To obtain the complete Lagrangian one makes the standard shift of the
scalar field fixes the gauge and adds ultraviolet counterterms. Let us consider
two gauges: the widely used Rξ-gauge [10], [11] with an arbitrary parameter
ξ and the unitary gauge.

The theory in the Rξ-gauge describes three physical massive vector bosons
with the mass m = gv/

√
2, and the physical Higgs field χ with the mass

M = 2λv. Here are also Goldstone ghosts φa and Faddeev-Popov ghosts ca

with masses ξm2. The structure of the counterterms (consistent with gauge
invariance and Slavnov-Taylor identities [12, 13] to ensure unitarity) is well
known, see e.g. [7].

The propagators in the unitary gauge defined by the gauge condition
φa = 0 are obtained from those of the Rξ-gauge by taking the limit ξ → ∞.
The theory in the unitary gauge is renormalizable only on mass-shell, i.e.
Green functions are divergent at ε → 0 ( ε being the parameter of dimensional
regularization) but the S-matrix elements are finite.

To consider renormalization for our purpose it is convenient to use the
Bogoliubov-Parasiuk-Hepp subtraction scheme [14]. As it is well known in
this scheme a counterterm of e.g. a primitively divergent Feynman diagram
is the truncated Taylor expansion of the diagram itself at some fixed values of
external momenta. Hence counterterms of mass dependent diagrams are also
mass dependent. Needless to say that subtractions should respect Slavnov-
Taylor identities.

Let us consider S-matrix elements in the Rξ-gauge without external Higgs
bosons (i.e. with external W-bosons only in this simplified model). We
will analyze the dependence of diagrams on the Higgs mass M by using for
convinience the expansion in large M (after renormalization but before the
removing regularization). The algorithm for the large mass expansion of
Feynman diagrams is given e.g. in [15] (where it is quite reasonably checked
in calculations of the 4-loop diagrams for the Z-boson decay into hadrons).
It can be rigorously derived with the technique of [16].

We separate all diagrams into physical ones which are not nullified in
the limit ξ → ∞ and unphysical ones which are nullified. In this limit the

8
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propagator of the W-boson reduces to the known unitary form

lim
ξ→∞

< T (W a
µW b

ν ) >= −iδab lim
ξ→∞

(
gµν − kµkν/m

2

k2 − m2
+

kµkν/m
2

k2 − ξm2

)
=

−iδab gµν − kµkν/m
2

k2 − m2

The propagators of the Goldstone bosons φa and ghosts ca vanish in this
limit and correspondingly all diagrams which contain these propagators are
also nullified.

Thus in our notations the physical diagrams are the diagrams which do
not contain Goldstone bosons propagators or ghosts propagators and the
unphysical diagrams are the diagrams which contain such propagators.

Within the large-M expansion the physical diagrams with χ-propagators
contain either terms with integer negative powers of M2: 1

M2n , n = 1, 2, 3, ...
or terms with non-integer powers of M2 (non-integer powers contain ε):

1
M2(k+lε) , k − integer, l − positive integer. This is because each vertex with
the large factor M2 has three or four attached χ-propagators due to the
structure of the Higgs boson self-coupling.

In contrast, unphysical diagrams can have polynomial in M terms due
to the four-φ vertex with the large factor M2. But they are ξ-dependent
(they are nullified in the limit ξ → ∞) and this polynomial terms cancel in
S-matrix elements.

In the renormalizable Rξ-gauge one can present ultraviolet renormaliza-
tion in a standard form of the Bogoliubov-Parasiuk R-operation for indi-
vidual diagrams. This ensures that after renormalization the M -dependent
terms are finite at ε → 0 separately from M -independent terms. Thus if one
removes all M -dependent terms one is left with a finite expression.

On the Lagrangian level it means in the unitary gauge that one removes
from LU all terms containing the field χ and also all M -dependent terms in
the counterterms. This should be done in the unitary gauge because in the
Rξ-gauge some diagrams containing propagators of Higgs particle can give
contributions not depending on the Higgs mass M . In contrast in the unitary
gauge all diagrams containing Higgs propagators give only contributions de-
pending on M so there is one to one correspondence between M -dependent
diagrams and terms in the Lagrangian containing the Higgs field χ

The resulting theory is on mass-shell finite. This is the massive Yang-
Mills theory of the Proca type

LY M = −1

4
(∂µW

a
ν − ∂νW

a
µ +

z1

z2

gfabcW b
µW c

ν )2 + m2W a
µW a

µ

plus counterterms.

9
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Thus the Higgs mechanism can be considered as an efficient mathematical
tool to observe on mass-shell renormalizability of the massive Yang-Mills
theory of the Proca type which is far from to be obvious directly.

Let us now return to our Lagrangian (9) with two scalar triplets which
after spontaneous symmetry breaking has four Higgs particles. Following the
above approach we can remove in the unitary gauge all four Higgs fields from
the Lagrangian preserving on mass-shell renormalizability of the theory. The
Lagrangian of the resulting QCD with massive gluons is

Lmassive QCD = LM − 1

4
F a

µνF
a
µν + iψfγµDµψf − mfψfψf (13)

plus counterterms, where the part LM with gluon mass terms is given in
eq.(11).

We would like to note that on mass-shell renormalizability does not mean
that one should consider quarks and gluons as free external particles which
would contradict to confinement. It means only that in the SU(3)×SU(2)×
U(1) theory the S-matrix elements with the physical external particles are
finite.

One can calculate the one-loop β-function in this theory [4] to obtain
that asymptotic freedom remains valid in the considered theory with massive
gluons.

3 Conclusions

Thus we have demonstrated that it is impossible to produce the mass-gap
in accordance with the fundamental Källen-Lehmann spectral representation
within QCD with zero Lagrangian gluon masses. Correspondingly one should
introduce the non-zero gluon masses into the fundamental QCD Lagrangian
to generate the necessary mass-gap.

We have also demonstrated that it is possible to introduce the gluon
masses into the QCD Lagrangian preserving on mass-shell renormalizability
and unitarity of the theory.
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