

Болоздыня Александр Иванович

ПОЗИЦИОННО-ЧУВСТВИТЕЛЬНЫЕ ДЕТЕКТОРЫ НА ОСНОВЕ ЧИСТЫХ БЛАГОРОДНЫХ ГАЗОВ ДЛЯ РЕГИСТРАЦИИ СЛАБОИОНИЗИРУЮЩИХ ЧАСТИЦ И ПОЛЕЙ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

Диссертация на соискание ученой степени доктора физико-математических наук

07.02.2011

СОДЕРЖАНИЕ

введение

Глава 1. ЧИСТЫЕ БЛАГОРОДНЫЕ ГАЗЫ КАК РАБОЧЕЕ ВЕЩЕСТВО ДЕТЕКТОРОВ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И ЯДЕРНЫХ ИЗЛУЧЕНИЙ

- Глава 2. СЦИНТИЛЛЯЦИОННЫЕ ПОЗИЦИОННО-ЧУВСТВИТЕЛЬНЫЕ ДЕТЕКТОРЫ
- Глава 3. ЭЛЕКТРО-ЛЮМИНЕСЦЕНТНЫЕ ПОЗИЦИОННО-ЧУВСТВИТЕЛЬНЫЕ ДЕТЕКТОРЫ
- Глава 4. ЭМИССИОННЫЕ ПОЗИЦИОННО-ЧУВСТВИТЕЛЬНЫЕ ДЕТЕКТОРЫ
- Глава 5. ЖИДКОСТНЫЕ ДЕТЕКТОРЫ С ТРЕХМЕРНОЙ ПОЗИЦИОННОЙ ЧУВСТВИТЕЛЬНОСТЬЮ
- Глава 6. РЕГИСТРАЦИЯ СЛАБОИОНИЗИРУЮЩИХ ЧАСТИЦ С ПОМОЩЬЮ ДЕТЕКТОРОВ С ТРЕХ-МЕРНОЙ
 - ПОЗИЦИОННОЙ ЧУВСТВИТЕЛЬНОСТЬЮ
- Глава 7. ДЕТЕКТОРЫ ДЛЯ ПОСТРОЕНИЯ ИЗОБРАЖЕНИЙ ПОЛЕЙ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

ЗАКЛЮЧЕНИЕ

Глава 1

ЧИСТЫЕ БЛАГОРОДНЫЕ ГАЗЫ КАК РАБОЧЕЕ ВЕЩЕСТВО ДЕТЕКТОРОВ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И ЯДЕРНЫХ ИЗЛУЧЕНИЙ

Эмиссия «свободных» электронов из неполярных диэлектриков

$$V_1(z) = V_0 - eF_1z + eA_1, z < 0$$

$$V_2(z) = -eF_2z + eA_2, z > 0$$

$$A_{1,2} = -e(\varepsilon_1 - \varepsilon_2) / \varepsilon_{1,2}(z + \xi z / |z|)(\varepsilon_1 + \varepsilon_2)$$

07.02.2011

Подповерхностный дрейф электронов

07.02.2011

С. Анисимов и др.,Письма в ЖЭТФ, 40 (1984) 829-832

5

Доказательство термоэлектронного характера эмиссии электронов из конденсированных тяжелых благородных газов

Эмиссионные кривые для ж. и тв. криптона

Следуя закону Ричардсона-Дэшмена-Лауэ

Характерное время эмиссии тепловых электронов из некоторых неполярных жидких диэлектриков

07.02.2011

7

	<i>T</i> , K	μο , cm2/V/s	<i>Vo</i> , eV	<i>Ec</i> , kV/cm	<i>Eo</i> , kV/cm	te			
Emitters of cold electrons									
L ⁴ He	1-2	0.03	+1			10 s (100V/cm)			
Ln-H	300	0.09	+0.09	100	0.03				
L iso-O	300	7	-0.18	90	0.15	20 μs (1kV/cm)			
L TMP	297	24	-0.3	50					
LAr	84	475	-0.21	0.2		700µs (100 V/cm)			
sNe	24	600	+1.1						
	Emitters of hot electrons								
LCH ₄	100	400	-0.18	1.5	<4				
sCH ₄	77	~1000	0		<1.5	< 0.1 µs (>1kV/cm)			
LAr	84	475	-0.21	0.2	0.25	< 0.1 µs (>0.3kV/cm)			
sAr	83	1000	+0.3 (6K)		0.1	< 0.1 µs (>100V/cm)			
LKr	116	1800	-0.4	0.08	1.6	< 0.1 µs (>1.6kV/cm)			
sKr	116	3700	-0.25 (20K)		0.98	$< 0.1 \ \mu s$ (>1kV/cm)			
LXe	161	2200	-0.61	0.05	1.75	< 0.1 µs (>1.8kV/cm)			
sXe	161	4500	-0.46 (40K)		1.25	$< 0.1 \ \mu s$ (>1.3kV/cm)			

Note: n-H - normal hexane, iso-O - isooctane, TMP - thetramethylepentane

8

07.02.2011

2009 LUX прототип 65 кг LXe

07.02.2011

CWRU chromatographic system removing Kr from Xe

10A

14A

flow

He MFC

2006 26 kg

0 10 KG 17A C-COLUMN RGA 19A pump P100 Xe condensor Xe MEC 2011 Xe Xe feed solenoid valve \triangleright 350 kg R manual valve A regulator

77 K Kr

trap

P1O

6A (1

7A

filter

Transfe tran

120 cycles 26 kg Xe for XENON10 <3 ppt (10⁻¹²) Kr

<6-10-23 85 <mark>Kr</mark>

Bolozdynya, Brusov, Shutt, Dahl, Kwong NIM A 579 (2007) 50

Выводы из Главы 1

- 1. Чистые благородные газы обладают уникальной комбинацией детектирующих свойств, позволяя эффективно конвертировать энергию, передаваемую регистрируемым излучением, в световое излучение (сцинтилляцию) и носители заряда (ионизацию).
- 2. Сцинтилляционное излучение плотных благородных газов и носители электрического заряда могут эффективно собираться из массивных образцов благородных газов, а также переноситься через границу раздела конденсированных и разреженных фаз тяжелых благородных газов и некоторых других неполярных диэлектриков.
- 3. В разреженных фазах чистых благородных газов возможно эффективное усиление ионизационного сигнала с помощью электролюминесценции вплоть до регистрации отдельных электронов.
- 4. Разработаны эффективные технологии очистки благородных газов от молекулярных и электроотрицательных примесей, разделения ксенона от криптона ниже уровня 2 ppt, способы охлаждения массивных детекторов на конденсированных благородных газов.

СЦИНТИЛЛЯЦИОННЫЕ ПОЗИЦИОННО-ЧУВСТВИТЕЛЬНЫЕ ДЕТЕКТОРЫ

Глава 2

ЛИДЕР – 130 кг LXe ЭМ калориметр

1993-1994

07.02.2011

Проект форвард-калориметра KRYPTONWALL для эксперимента WASA на ускортителе CELSIUS

Выводы из Главы 2

- Сцинтилляционное излучение чистых благородных газов можно использовать для позиционно-чувствительной регистрации частиц высокой энергии и ядерных реакций с энерговыделениями порядка 1 МэВ.
- 2. Найдено техническое решение создания прецизионного гранулированного сцинтилляционного электромагнитного калориметра для позиционной регистрации ливней с энергиями свыше 100 МэВ.
- 3. Побочными, но крайне важным результатом этого цикла исследований, была демонстрация того, что
 - Можно использовать фотоумножители со стеклянными корпусами и кремниевые фотодиоды и их сборки в чистых сжатых и жидких тяжелых благородных газах;
 - (2) Можно эффективно собирать сцинтилляционное излучение из массивных (130 кг) образцов ксенона и детекторов метровых размеров;
 - (3) Разработанные методы очистки позволяют создавать массивные сцинтилляционные детекторы на сжиженном ксеноне и криптоне и их смесях. ¹⁶

ЭЛЕКТРО-ЛЮМИНЕСЦЕНТНЫЕ ПОЗИЦИОННО-ЧУВСТВИТЕЛЬНЫЕ ДЕТЕКТОРЫ

Глава З

Сравнение электролюминесценции и газового усиления

Газовое Усиление

Электролюминесценция

B однородном электрическом поле E=V/d $N_e = N_o \exp(\alpha x), \ \alpha = \alpha(E)$ $N_{ph} = 70 \ N_o(E/p - 1.0)pd \sim N_oV$

Рекордная виброустойчивость

1994-95 3D электролюминесцентная гамма камера на сжатом ксеноне

07.02.2011

Bolozdynya, Egorov, Kuchenkov e.a. NIM A 385 (1997) 225

Выводы из Главы 3

- 1. Методические исследования электролюминесцентных детекторов подтвердили их чрезвычайную устойчивость к внешним неблагопрятным факторам таким, как вибрация.
- Показано, что электролюминесценция чистых благородных газов способна обеспечить эффективное усиления ионизационного сигнала, а благодаря линейности «светового усиления», в электролюминесцентных детекторах достигается хорошее энергетическое разрешение в области кэВ-ных энергий.
- Электролюминесцентные детекторы, оснащенные многоканальными фотоприемниками, обеспечивают хорошую позиционную чувствительность (порядка 1-3 мм) при умеренном числе каналов считывания (порядка 1 канала на 10 см² области позиционной чувствительности).
- 4. Технология считывания сигналов с электролюминесцентных детекторов органично сочетается с регистрацией сцинтилляций.

Глава 4

ЭМИССИОННЫЕ ПОЗИЦИОННО-ЧУВСТВИТЕ ЛЬНЫЕ ДЕТЕКТОРЫ

1970-73 Эмиссионная искровая камера

1977 Эмиссионная стримерная камера

07.02.2011

Рис. 6.7. Фотографии треков частиц в эмиссионной стримерной камере (*a* – частица прошла через газовую фазу над твердым криптоном; *б*–*г* – частицы прошли через твердый криптон). Температура 78 К, постоянное поле 1,5 кВ/см, импульсное поле амплитудой 2–5 кВ/см и длительностью 60 нс. Съемка производилась с расстояния 1,5 м фотокамерой 'Зенит-В'' с объективом 'Юпитер-9'' на аэрофотопленку типа 29

07.02.2011

Bolozdynya, Miroshnichenko, Rodionov e.a. JETP Lett. 25 (1977) 401

1980-1990

1983 Эмиссионная электролюминесцентная гамма камера

Egorov, Rodinov, Bolozdynya e.a. NIM 205 (1983) 373

Выводы из Главы 4

- Эмиссонные детекторы обладают совокупностью детектирующих свойств, которые делают их уникальным инструментом экспериментальной ядерной физики: сочетание конденсированной рабочей среды с газовой фазой, где возможно усиление ионизационного сигнала вплоть до регистрации отдельных электронов.
- Первые опыты показали, что эмиссионные детекторы могут использоваться для поиска частиц с аномально низкой ионизирующей способностью.
- 3. Методические исследования электролюминесцентных эмиссионных детекторов показали возможность сочетания достоинств эмиссионного детектора и электролюминесцентной камеры в одном приборе.

Глава 5

ЖИДКОСТНЫЕ ДЕТЕКТОРЫ С ТРЕХМЕРНОЙ ПОЗИЦИОННОЙ ЧУВСТВИТЕЛЬНОСТЬЮ

1995 Эмиссионный детектор «без стенок»

Fig.4. LXe time-projection scintillating drift chamber as wall-less detector for measurements of magnetic momentum neutrino.

Одно-электронная
чувствительность

• Два сигнала: ионизация и возбуждение атома

•«Самоэкранировка»

• Большая масса

07.02.2011

Bolozdynya, Egorov, Miroshnichenko, Rodionov. IEEE Trans. Nucl. Sci. v.42, n.4 (1995) 565-569

WIMP Signals in a Dual-Phase Xenon Detector

4 keVee event; S1: 8 p.e => 2 p.e./keV

Hit pattern of top PMTs

Разделение сигналов от гамма-квантов и нейтронов

Электроны от ¹³³Ва

Нейтроны от ²⁵²Cf

Энерговыделение (кэВ эквивалентной энергии)

Measurements above ground

Эффект самоэкранировки

Выводы из Главы 5

- Успешное развитие технологий быстрых сцинтилляционных детекторов, высокочувствительных к ионизации электролюминесцентных детекторов и эмиссионных детекторов, привело к пониманию того, что все эти подходы могут быть объединены в новом классе детекторов – рекордных по чувствительности к редким и слабоионизирующим частицам детекторам «без стенок».
- 2. Для достаточно больших и массивных детекторов объем сверхчистого вещества детектора *B*, окружающего чувствительный объем *A*, может играть роль защиты от радиоактивного излучения окружающих материалов. В режиме активной защиты слой *B* используется для отсева событий в объеме *A*, коррелированных по времени с событиями в объеме *B*. Это позволяет исключать события, произошедшие в результате многократных рассеяний фоновых частиц.
- 3. Дополнительным мощным методом отсева фоновых событий служит идентификация природы взаимодействия по соотношению долей энергии, затраченных на ионизацию и возбуждение рабочей среды 35 детектора.

Глава 6

РЕГИСТРАЦИЯ СЛАБОИОНИЗИРУЮЩИХ ЧАСТИЦ С ПОМОЩЬЮ ДЕТЕКТОРОВ С ТРЕХ-МЕРНОЙ ПОЗИЦИОННОЙ ЧУВСТВИТЕЛЬНОСТЬЮ

Регистрация WIMP

Плотность частиц холодного темного вещества на Земле:

 $\rho \sim 300 \frac{m_{\text{proton}}}{\text{liter}}$ $m_{wimp} \sim 100 m_{proton.}$

3 WIMPS / liter !

Typical orbital velocity: $v \approx 230$ km/s

Coherent scalar interactions: A²

Скорость счета:

< 0.06 события/кг/день

2004-2007 XENON-10

2007 Рекорд эмиссионного детектора XENON-10

-

LUX Collaboration Meeting March 2009, Lead, SD

07.02.2011

46

2010 Детектор LUX – 350 kg LXe

07.02.2011

Predicted WIMP rate = 4 events in 300 day for $7 \cdot 10^{-46}$ cm² @ 100 GeV

LUX в пещере Дэвиса

07.02.2011

Эмиссионные детекторы ВИМПов

Project	Detector mass, Total/Feducial, kg	Sensitivity, 10 ⁻⁴⁴ cm ²	Location, Years on duty	Status	Ref.
XENON10	25/5 LXe	8.8 @ 100 GeV/c ² 5.5 @ 30 GeV/c ²	GS, 2006-07	Completed	a
XENON100	100/10 LXe	0.2 @ 100 GeV/c ²	GS, 2008-09	Active	b
ZEPLIN II	31/8 LXe	66 @ 55 GeV/c ²	BM, 2006-07	Completed	c
ZEPLIN III	12/6.5 LXe	0.18 @ 55 GeV/c ²	BM, 2008-09	Active	d
LUX	300/100 LXe	0.07 @ 100 GeV/c ²	H, 2010	u/c	e
WARP10	10/2.6 LAr	75 @ 100 GeV/c ²	GS, 2006	Completed	g
WARP100	100 LAr	1 @ 100 GeV/c ²	GS, 2009-10	u/c	g

Notes: BM – Boulby mine (England); GS – Gran Sasso Underground Laboratory (Italy);

H – Homestake DUSEL (South Dakota); u/c – under construction;

a - Angle et al., 2007; b - Aprile and Baudis, 2009; c - Alner et al., 2007; g - Benetti et al., 2008

Семейство эмиссионных детекторов ВИМПов G3

20 тонн LXe – проекты эмиссионных детекторов

LZ20

LUX LZ3 LZ20 1y LZ20 10y

07.02.2011

53

Регистрация нейтрино

1992-1996 Эмиссионный детектор для регистрации (ve)-рассеяния (неокончен)

Когерентное рассеяние

Large cross-section

 $\sigma_{\text{elastic}} = \frac{G_F^2}{4\pi} N^2 E_v^2$ \$\approx 0.4 \times 10^{-44} \text{cm}^2 A^2 E_v (MeV)^2\$

Small recoil energies

$$\langle E_{\rm recoil} \rangle = 716 \, {\rm eV} \, \frac{E_{\nu}^2 ({\rm MeV})}{A}$$

10⁻⁴⁰ Elastic Scattering off Ar 10⁻⁴⁰ 10⁻⁴¹ 10⁻⁴² 10⁻⁴² 10⁻⁴³ 10⁻⁴³ 10⁻⁴⁴ 0 2 4 6 8 10 Neutrino Energy [MeV]

Коллаборация РЭД: Модельный эксперимент на ИРТ НИЯУ МИФИ

4

Солнечные нейтрино

Ожидаемые спектры от вимпов с массами 0,1, 1 и 10 ТэВ/с² (1, 2 и 3, соответственно), солнечных нейтрино pp-, ⁷Ве и ⁸В циклов (4, 5 и 6, соответственно) и двойного бета-распада с 10²² лет периода полураспада для нейтринного (7) и 10²⁷ лет для безнейтринного (8) распадов, соответственно, в естественной смеси изотопов ксенона.

Регистрация двойного позитронного β*-распада

A.Bolozdynya et al., IEEE Trans. Nucl. Sci., 44 (1997) 1046-1051

Выводы из Главы 6

- 1. Использование эмиссионных детекторов на сжиженных благородных газах, работающих в режиме «безстеночного» детектора, привело к резкому увеличению чувствительности экспериментов по поиску холодного темного вещества во Вселенной.
- Эмиссионная детектораная технология безусловный лидер в постановке экспериментов следующего поколения с массой рабочего вещества в несколько тонн. Таким детекторам будет под силу также регистрация низкоэнергичных солнеченых нейтрино, безнейтринного бета-распада.
- 3. Одним из перспективных направлений расширения области применения эмиссионных детекторов является постановка опыта по обнаружению когерентного рассеяния реакторных антинейтрино. В случае успешного решения этой задачи сданет возможным создание компактных и очень эффективных приборов для нейтринной диагностики энергетических реакторов.

Глава 7

ДЕТЕКТОРЫ ДЛЯ ПОСТРОЕНИЯ ИЗОБРАЖЕНИЙ ПОЛЕЙ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

Электролюминесцентная гамма-камера

Изображение свинцового бар-фантома, полученное с точечно-подобным источником 241Am, установленным на расстоянии 1,5 мм от входного окна детектора СДК-19 (слева) и распределение плотности точек в сечении нижнего левого квадранта на линии Y=-5 см.

Комптоновская гамма-камера

 $\cos \theta = 1 - m_e c^2 [1/E_a - 1/(E_a + E_s)]$ 140 120 РМТ en inter and it is at 111 111 111 111 111 Light-guide 100 **Glass window** High pressure chamber 80 Light-generating gap 60 _____ **Drift region Shaping ring electrode** Flat grounded electrode 40 **Spherical entrance** 16.7 window 20 γ-source 0 0 20 40 60 80

· · · ·

100

120

140 E, keV

Цилиндрическая комптон-камера для SPECT

Усиление чувствительности

 $G = (\varepsilon_{CC} / \varepsilon_{AC}) k_{\theta} k_E / m$

Para	imeters of the Co	ompton Came	ra in Comparise	on with Three-h	leaded SPECT Syste	em with $ROR = 3$	0 cm
Configuration	System Position Resolution, mm FWHM	Sensitivity Gain at m=10	System Energy Resolution, % FWHM	Total Detection Efficiency, %	Allowed Count Rate of Accepted Events, MHz	Number of Channels in the Scatter Detector	Number of Channels in the Absorption Detector
3 head SPECT	10-15	1	9	0.01	0.3	-	200
5mmSi/ /1.3cmNaI(Tl)	26	50	9	14	<1	30,000	800
5mmSi/ /1cmCdZnTe	22	50	6	14	>100	30,000	20,000
10cm20atmAr / /20cm20atmXe	10-20	10	2	4	10	300	1,000
5mmSi / /20cm20atmXe	10-20	50	2	14	10	30,000	1,000

Выводы из Главы 7

- Технология детекторов на чистых благородных газов с большой плотностью (жидкость) и атомным номером среды (ксенон) обладает значительным потенциалом для создания томографических систем, включая однофотонную томографию и ПЭТ.
- 2. Уже первые попытки создания детекторов для однофотонного томографии привели к разработке детекторов с рекордными параметрами по простанственному и энергетическому разрешению.
- Детекторы с трехмерной позиционной чувствительностью могут послужить основой для разработки принципиально новой техники для медицинской интроскопии – комптоновским камерам.

ЗАКЛЮЧЕНИЕ

- Технические проблемы, долгое время ограничивавшие использование плотных тяжелых благородных газов, в настоящее время решены. Достигнутый уровень технологии позволяет создавать низкофоновые «безстеночные» детекторы рабочей массой 1-10 тонн
- Первый истинно «безстеночный» эмиссионный детектор вимпов XENON-10 исключил значительную часть теоретически разрешенного параметрического пространства «сечение-масса» для нейтралино и тяжелых Майорановских нейтрино с массами в диапазоне 10 ГэВ/с²–2 ТэВ/с² из кандидатов в холодное темное вещество.
- Эмиссионные детекторы следующего поколения будут использовать до тонны жидкого ксенона для решения нескольких задач, включая поиски двойного бета-распада и регистрацию солнечных нейтрино
- 4. Технология детекторов на чистых благородных газов обладает значительным потенциалом для создания новых томографических систем диагностики для ядерной медицины

Основные результаты опубликованы здесь

2010 World Scientific

emission detectors detectors alexander i bolozdynya

1993 Энергоатомиздат

С. Барибны А.И. Банксіннік Жидкостные ионизационные ДЕТЕКТОРЫ

2004

2006

Wiley-VCH

Gas Detectors

WILEY-VCH

E. Aprile, A.E. Bolotnikov,

A.I. Bolozdynya, T. Doke

Noble

РОССИЙСКИЙ ЭМИССИОННЫЙ ДЕТЕКТОР

