РАЗРАБОТКА СВЕРХЧУВСТВИТЕЛЬНОГО МЕТОДА РЕГИСТРАЦИИ ИОНИЗАЦИИ В ДЕТЕКТОРАХ НА ОСНОВЕ БЛАГОРОДНЫХ ГАЗОВ

Работа выполнена в Институте Теоретической и экспериментальной физики

Научный руководитель: Кандидат физико – математических наук, Д.Ю. Акимов

Эксперименты по поиску темной материи

ФЭУ → МГЛФД+ Спектросместитель+ТГЭУ

Многопиксельный Гейгеровский Лавинный Фотодиод

Многопиксельный Гейгеровский Лавинный Фотодиод

LED pulse spectrum (A. Akindinov et al., NIM387 (1997) 231)

^(д) Умножение: $M = C^*(U - U_{br})$ Заряд: $Q = e^* N_{cell} * C^*(U - U_{br})$ Эффективность регистрации фотонов: PDE= Q.E. $*R_G * \varepsilon_{geom}$ PDE в зависимости от длины волны для диодов ЦПТА 2x2 mm²

ЦПТА – «синий»

Работы были начаты с поиска эффективного переизлучателя из ВУФ в синюю область и испытаний МГЛФД

- 1- спектр излучения Хе,
- 2 спектр поглощения р-терфенила,
- 3 спектр излучения р-терфенила,
- 4 спектральная чувствительность МГЛФД (ЦПТА)

Схема измерений. а) Слой р-терфинила герметизирован между окнами, б) р-терфинил покрыт слоем поли-пара-ксилиленом. 1 – ФЭУ Hamamatsu R7200, 2 – α -источник ²⁴¹Am, 3 – окно (сапфир), 4 – р-терфинил, 5 – МГЛФД, 6 – окно, 7 – Аг атмосфера между окнами, 8 - слой поли-пара-ксилилена.

Отработана технология нанесения переизлучателя (р-терфенил) на сапфир и покрытия его конформной защитной пленкой поли-пара-ксилилена, исследованы спектральные характеристики переизлучателя.

Экспериментальные спектры

Результаты обработки данных и вычислений

Конструкция спектросместителя	N _{cells}	Ω	PDE,%
Р-терфенил герметизирован между двумя оптическими окнами	24±0.5	1.35*10-3	9.7±1.2
Р-терфенил покрыт поли- пара-ксилиленовой пленкой	72±1.5	1.99*10-2	8.4±1.1

P. Benetti, et al., *Nucl. Instr. Meth.* A505, 89 (2003). For a blue sensitive PMT (QE \approx 20%) with WLS: $\sim 10\%$ Демонстрационный прототип регистрирующей системы ТГЭУ + Спектросместитель + матрица МГЛФД установлен в тестовую камеру ИТЭФ (прототип детектора ZEPLIN III).

Демонстрационный прототип регистрирующей системы ТГЭУ + Спектросместитель + матрица МГЛФД

Газовый Электронный Умножитель

Компоненты системы

Матрица: 19 фотодиодов

фотодмод ЦПТА АТПТА

Первые результаты

Испытания системы были проведены в декабре 2010 – январе 2011

Время жизни электрона ~ 10 мкс

MRS APD matrix

Схема 2ТГЭУ + Спектросместитель + МГЛФД - Результаты

Моделирование светосбора методом Монте-Карло

16

Моделирование светосбора методом Монте-Карло

Оценка чувствительности

Чувствительность схемы ТГЭУ+Спектросместитель+МГЛФД составила 0.75 ± 0.1 ячейки/е (При данном значении перенапряжения (~ 1 В), PDE ~ 1/3 от полного значения)

Фактор заполнения(Геометрическая эффективность) ~6%. Можно достичь ~50%, (при использовании фотодиодов большой площади),

чувствительность составит ~ 20 ячеек/е,

сравнимо с современными матрицами ФЭУ.

Современные фотодиоды фирмы КЕТЕК GmbH обладают эффективностью > 40% на длине волны 420 нм (в 2 раза выше чем у фотодиодов ЦПТА, которые были использованы в данной работе)

Для новых МГЛФД РМ6660 фирмы КЕТЕК отношение размера чувствительной области (6.0 х 6.0 мм) к полной площади (7.0 х 7.5 мм) = 0.69.

Чувствительность ~ 50 ячеек/е (при использовании МГЛФД РМ6660)

Основные выводы

• Эффективность регистрации (PDE) для системы фотодиод + спектросместитель составила 10%

• Успешно протестирована защита р-терфинила, предотвращающая загрязнение ксенона электроотрицательными примесями.

 Успешно протестирован переизлучатель большой площади с защитным слоем в двухфазном детекторе.

• Продемонстрирована работа ТГЭУ в ксеноне (электролюминесцентное усиление).

•Показана работоспособность многоканальной системы лавинных Гейгеровских фотодиодов в криогенном детекторе на благородном газе (впервые в мировой практике).

• Показано отсутствие существенного выделения загрязнений многочисленными органическими элементами системы.

Отметим, что для работы системы в составе детектора Темной Материи требуются более мощные средства очистки благородного газа от электроотрицательных примесей: максимально достигнутое время жизни свободных электронов составило 10 мкс при имевшемся ранее значении ~ 15 – 20 мкс.