Институт ядерных исследований Российской академии наук

Стронций-82, олово-117m и актиний-225 – перспективные изотопы для получения на ускорителях протонов средних энергий

Strontium-82, tin-117m and actinium-225 – prospective isotopes for production by medium-energy proton accelerators

Stanislav Ermolaev

Production of ⁸²Sr from metallic Rb

T_{1/2} = 25.55 d

A mother radionuclide for a short β^+ -emitter ⁸²Rb (1.3 min) – positron emission tomography

Main nuclear route:Other approach: $^{nat}Rb(p,xn)$ E_p 35-100 MeV $^{nat}Mo(p,x)$ E_p 800 MeV

Metallic Rb Targets withstanding intensive irradiation

Thickness 3 cm

Thickness 2.3 cm

Calculated temperature and velocity distributions in liquid Rb (at 100 µA beam current))

B.L. Zhuikov, S.V. Ermolaev. Radioisotope research and development at the Linear Accelerator of the Institute for Nuclear Research of RAS. Phys. Usp., 2021, v. 64(12).

New approach: ⁸²Sr adsorption from liquid Rb

B.L. Zhuikov, V.M. Kokhanyuk, J.S. Vincent. Sorption of radiostrontium from liquid rubidium metal. *Radiochemistry*, 2008, v. 50(2), p. 191-197.

Direct ⁸²Sr adsorption inside a Rb target

⁸²Sr Distribution Along Vertically Oriented Rb Target

«Развитие радиохимии и получение медицинских изотопов» ИЯИ РАН Троицк-Москва 14.01.2022

Installation of new technology of ⁸²Sr recovery

IPPE (Obninsk, RUSSIA)

ARRONAX (Nantes, FRANCE)

Final chromatographic purification using ion exchange or **Sr Resin**

Production of theranostic ^{117m}Sn from antimony

T_{1/2} = 14.0 d Therapy: conversion and Auger electrons. Diagnostics: γ-emission 159 keV

Main nuclear routesOthers: $^{116}Cd(\alpha,3n)$ $^{nat,121,123}Sb(p,x)$ $E_p 20-70$ MeV $^{116}Sn(n,\gamma)$ or $^{117}Sn(n,n'\gamma)$

Targets withstanding intensive irradiation

Metallic Sb in graphite shell

TiSb intermetallic compound

High specific activity of proton-produced ^{117m}Sn

Extraction of antimony with dibutyl ether

Separation of ^{117m}Sn from Ti and the rest of Sb: Extraction

Separation of ^{117m}Sn from Ti: lon exchange

Fine ^{117m}Sn purification on a SiO₂ column from citrate solution

«Развитие радиохимии и получение медицинских изотопов» ИЯИ РАН Троицк-Москва 14.01.2022

Overall scheme of ^{117m}Sn recovery

Chemical yield75-85%Radionuclidic purity
(excepting ¹¹³Sn)> 99.7%Purification
from Sb and Ti~ 106

2-5 GBq samples of no-carrier-added ^{117m}Sn were shipped to BNL for quality analyses, biological and preclinical studies

Prospective applications of theranostic ^{117m}Sn

Nigel R. Stevenson "Harnessing ^{117m}Sn for Improved Quality of Life" 10ICI, Kuala Lumpur, 2020

- Cardiology (vulnerable/unstable plaques)
- Rheumatology
- Neurology (Alzheimer's)
- Oncology
- Veterinary

Luminal calcified plaque

Extra-luminal vulnerable plaque

Production of ²²⁵Ac from thorium

 $T_{1/2}$ = 9.9 d Emission of α-particles: high LET in short range (~ 10 cell diameters). ²²⁵Ac/²¹³Bi generator

Main nuclear routes

□ 233 U (1.6 $^{\cdot}10^{5}$ a) $\rightarrow ^{229}$ Th (7340 a) $\rightarrow ^{225}$ Ra $\rightarrow ^{225}$ Ac

□ ²²⁶Ra (3n, 2
$$\beta$$
⁻) → ²²⁹Th → ²²⁵Ra → ²²⁵Ac

- □ ²²⁶Ra (n, 2n) \rightarrow ²²⁵Ra \rightarrow ²²⁵Ac
- □ ²²⁶Ra (γ , n) \rightarrow ²²⁵Ra \rightarrow ²²⁵Ac
- □ ²³²Th (p, xpyn) \rightarrow ²²⁵Ac $E_p > 70$ MeV

Annual production of ²²⁵Ac from ²²⁹Th, GBq (mCi)

Institution	JRC ITU (EC)	ORNL (USA)	IPPE (Russia)
Stock of ²²⁹ Th	1.7 (45.6)	5.55 (150)	5.55 (150)
Maximal annual production of ²²⁵ Ac	13 (350)	26 (700)	22 (600)
Maximal batch size	1.3 (35)	2.2 (60)	1.85 (50)

USA demand for ²²⁵Ac (DOE estimation) – 100-200 Ci per year

²²⁵Ac production via irradiation of ²³²Th with medium-energy protons (200-70 M₃B) 1.5 – 2 Ci ²²⁵Ac in 7-10 days (impurity ~0.1% ²²⁷Ac)

Th Targets withstanding intensive irradiation

INR Diffusion Welding facility located at the SIA Luch (Russia)

After irradiation

Before

irradiation

More than 80 radionuclides were identified in proton-irradiated thorium – products of nuclear spallation and fission and products of their decay: ^{228,229,230,232,233}Pa, ^{227,228,231}Th, ^{225,226,227}Ac, ^{90,91}Sr, ^{88,90}Y, ^{95,97}Zr, ^{95,96}Nb, ⁹⁹Mo, ^{103,106}Ru, ¹⁰⁵Rh, ^{110m,111}Ag, ¹¹⁵Cd, ¹²⁵Sn, ^{120,122,124,125,126,127,128}Sb, ^{129m,131m,132}Te, ^{126,130,131,133,135}I, ^{132,134,136,137}Cs, ¹⁴⁰Ba, ¹⁴⁰La, ^{139,141,143,144}Ce, ¹⁴⁷Nd, ^{148m}Pm etc.

Target of metallic thorium encapsulated in niobium

Concentration of Ac and REE fraction

Purification of Ac and REE fraction

No auxiliary steps or evaporations – an advantage for hot cell realization

Separation of Ac and REE

Hot cell approbation of ²²⁵Ac recovery

INR RAS

Lomonosov Moscow State University Karpov Institute of Physical Chemistry

Chemical yield > 85%

Radionuclidic purity (excepting ²²⁷Ac) > 99.8%

²²⁷Ac impurity (10th day after EOB) ~ 0.2%

Thorium impurity < 0.1 mg/L

Stable impurities < 50 мг/л

Clinical experience with ²²⁵Ac- and ²¹³Bi-labeled compounds

A. Morgenstern et al. An Overview of Targeted Alpha Therapy with ²²⁵Actinium and ²¹³Bismuth. *Current Radiopharmaceuticals*, 2018, v. 11(2), p. 1–9.

Leukemia
Melanoma
Prostate cancer
Lymphoma
Gliomas
Neuroendocrine tumors

Remarkable responses to Bi-213-DOTATOC observed in tumors resistant to previous therapy with Y-90/Lu-177-DOTATOC

Case I: Shrinkage of liver lesions and bone metastases after i.a. therapy with 11 GBa Bi-213-DOTATOC

Case II: Response of multiple liver lesions after i.a. therapy with 14 GBa Bi-213-DOTATOC